Higher discrete homotopy groups of graphs
نویسندگان
چکیده
This paper studies a discrete homotopy theory for graphs introduced by Barcelo et al. We prove two main results. First we show that if G is graph containing no 3- or 4-cycles, then the nth group A n (G) trivial all n?2. Second exhibit each n?1 natural homomorphism ?:A (G)?? (G), where ? cubical singular homology group, and an infinite family of which nontrivial ? surjective. It follows there are nontrivial.
منابع مشابه
Homotopy Variation Map and Higher Homotopy Groups of Pencils
We prove in a synthetic manner a general Zariski-van Kampen type theorem for higher homotopy groups of pencils on singular complex spaces.
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولOn Higher Homotopy Groups of Pencils
We consider a large, convenient enough class of pencils on singular complex spaces. By introducing variation maps in homotopy, we prove in a synthetic manner a general Zariski-van Kampen type result for higher homotopy groups, which in homology is known as the “second Lefschetz theorem”.
متن کاملHomotopy groups of Hom complexes of graphs
The notion of ×-homotopy from [Doca] is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space Hom∗(G,H) with the homotopy groups of Hom∗(G,H ). Here Hom∗(G,H) is a space which parameterizes pointed graph maps from G to H (a pointed version of the usual Hom complex), and H is the graph of based...
متن کاملHigher Groups in Homotopy Type Theory
We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-Löf type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic combinatorics
سال: 2021
ISSN: ['2589-5486']
DOI: https://doi.org/10.5802/alco.151